PRINCIPLES - LESSON 1F SUBSETS OF THE REAL NUMBERS

Our number system was invented by a caveman named Og. (maybe)

NATURAL NUMBERS: { 1, 2, 3, 4, 5, 6, 7, ... }

THE NUMBER SYSTEM SO FAR

Let's draw a picture of our number system! We will add to this diagram as we go.

All notural numbers live Inside here. NATURALS

THE NUMBER SYSTEM EXPANDS

Nog has no trees. We need a new number. Zero is invented.

NATURAL NUMBERS: { 1, 2, 3, 4, 5, 6, 7, ... } WHOLE NUMBERS: { 0, 1, 2, 3, 4, 5, 6, 7, ... }

NOTE: I made up everything about Og and Nog.

THE NUMBER SYSTEM SO FAR

Closure Property: when you combine any two elements of a set, the result is also included in the set

ex1) Are the whole numbers closed under addition? Yes! Adding 2 whole numbers will always (esult in another whole number: ex2) Are the whole numbers closed under multiplication? Yes! Multiplying 2 whole numbers will always (esult in another whole number: ex3) Are the whole numbers closed under subtraction?

No! ex)
$$5-8 = -3 \leftarrow not a whole number$$

THE NUMBER SYSTEM EXPANDS

In the whole number system, **4 - 7** has no answer. The number system had to expand to include negative numbers.

NATURAL NUMBERS: { 1, 2, 3, 4, 5, 6, 7, ... }

WHOLE NUMBERS: $\{0, 1, 2, 3, 4, 5, 6, 7, ...\}$

INTEGERS: { ... -3, -2, -1, 0, 1, 2, 3 ... }

INTEGERS = positive wholes, negative wholes, and zero Integers are pretty numbers (not fractions or decimals).

Closure Property: when you combine any two elements of a set, the result is also included in the set

ex4) Are the integers closed under addition? Yes! Adding 2 integers will always result in another integer. ex5) Are the integers closed under multiplication? Yes! Multiplying 2 integers will always result in another integer. ex6) Are the integers closed under subtraction? Yes! Subtracting 2 integers will always result in another integer. ex7) Are the integers closed under division? No! ex) 3:4 = 0.75 (not an integer

THE NUMBER SYSTEM EXPANDS

In the integers, $3\div 4\,$ has no answer. The number system had to expand to include fractions and decimals.

NATURAL NUMBERS: $\{ 1, 2, 3, 4, 5, 6, 7, ... \}$ WHOLE NUMBERS: $\{ 0, 1, 2, 3, 4, 5, 6, 7, ... \}$ INTEGERS: $\{ ... -3, -2, -1, 0, 1, 2, 3 ... \}$ RATIONALS: $\{ ... -2, -\frac{3}{4}, 0, 1\frac{1}{2}, 2.38, 3 ... \}$

RATIONAL NUMBER: any number that CAN BE written as a quotient of two integers

Show that the following numbers are rational. (just write them as fractions)

Closure Property: when you combine any two elements of a set, the result is also included in the set

ex12) Are the rationals closed under addition? Yes! Adding 2 rationals will always result in another rational. ex13) Are the rationals closed under multiplication? Yes! Multiplying 2 (ationals will always result in another (ational ex14) Are the rationals closed under subtraction? Yes! Subtracting 2 rationals will always result in another rational. ex15) Are the rationals closed under division? Yes! Dividing 2 rationals will always result in another rational.

When a rational number is written as a decimal it will do one of 2 things:

1. Terminate (end)

2. Repeat

WHAT KIND OF NUMBERS CANNOT BE WRITTEN AS A FRACTION?

IRRATIONAL NUMBER: any number that CANNOT BE written as a quotient of two integers

ex16) List 3 irrational numbers.

RATIONAL VS IRRATIONAL

RATIONAL NUMBERS

CAN be written as a fraction

As a decimal: will TERMINATE or REPEAT

IRRATIONAL NUMBERS

CANNOT be written as a fraction

As a decimal: will CONTINUE FOREVER WITHOUT REPEATING

REAL NUMBER: for our purposes, every number is a real number

