PRINCIPLES - LESSON 12C EACTORING BY DIFFERENCE OF TWO SQUARES

Recall: Factoring by GCF

Factor.

ex1) $16m^3n^4 - 12m^4n^3 + 20m^5n^2 + 4m^2n^3$

$$= 4mn \left(4mn - 3mn + 5mn + 1\right)$$

6CF leftovers

Note: The GCF method can be used to factor a polynomial of any size.

Factor.

This polynomial <u>can be factored</u>, but not by the GCF method.

Be sure to know all perfect squares from 1 to 400 at least.

$1 \cdot 1 = 1^2 = 1$	11 · 11 = 11² = 121
$2 \cdot 2 = 2^2 = 4$	12 · 12 = 12² = 144
$3 \cdot 3 = 3^2 = 9$	13 · 13 = 13² = 169
$4 \cdot 4 = 4^2 = 16$	14 · 14 = 14² = 196
$5 \cdot 5 = 5^2 = 25$	15 · 15 = 15² = 225
$6 \cdot 6 = 6^2 = 36$	16 · 16 = 16² = 256
$7.7 = 7^2 = 49$	17·17 = 17² = 289
$8 \cdot 8 = 8^2 = 64$	18 · 18 = 18² = 324
$9 \cdot 9 = 9^2 = 81$	19·19 = 19² = 361
$10.10 = 10^2 = 100$	$20 \cdot 20 = 20^2 = 400$

A square root is the number that is multiplied by itself to produce each perfect square.

ex3) Why is x² a perfect square?

Decause $\chi^{\lambda} = \chi \cdot \chi$

ex4) Why is n² a perfect square? because $n^{2} = n \cdot n$

ex5) Why is r^6 a perfect square? because

ex6) Why is m^{20} a perfect square? because $m^{20} = m^{10} m^{10}$

All EVEN exponents are perfect squares.

