PRINCIPLES ALESSON 14A SIMPLIFYING IRRATIONAL RADICALS

Recall: Irrational Numbers

Irrational Number = a number that CANNOT be written as a fraction If written as a decimal, an irrational number <u>will neither terminate nor repeat</u>.

Simplify by using a calculator.

THE FIRST RULE FOR SIMPLIFYING RADICALS

We will eventually learn 3 rules for simplifying radicals.

They are not at all obvious. You know that the problem is finished when all of the rules are satisfied.

THE FIRST RULE FOR SIMPLIFYING RADICALS

1. There must be no perfect factors under the radical.

Simplify.

Think of a radical sign as a jail cell. The only ones that can break out of the jail are <u>perfect factors</u>.

SIMPLIFYING RADICALS

Simplify.

ex5) √75	= \25.3			
	= 5,3			
ex6) √72	$= \sqrt{36 \cdot \lambda}$			
	= 653			
ex7) √22	= 722			
This is already simplified				
because 22 has no perfect				
square factors.				

When a perfect factor breaks out of a radical, you must take the necessary root.

THE FIRST RULE FOR SIMPLIFYING RADICALS

1. There must be no perfect factors under the radical.

Perfe	ect Sa	<u>uares</u>
1		121
4	2	144
9	0	169
16		196
25		225
36		256
49		289
64		324
81		361
100		400

Simplify.

ex8) $\sqrt[3]{40} = \sqrt[3]{8} \cdot 5$

ex9) $\sqrt[3]{375} = \sqrt[3]{25.5}$

When a perfect factor breaks out of a radical, you must take the necessary root.

THE FIRST RULE FOR SIMPLIFYING RADICALS

. There must be no perfect factors under the radical.

TAKING ROOTS OF VARIABLES

• TAKING ROOTS OF VARIABLES

Simplify.

 $ex14) \sqrt{\chi^5}$ $= \sqrt{\chi^4 \cdot \chi}$ $= \sqrt{\chi^2 \cdot \chi}$

Exponents that are multiples of 2 are perfect squares.

ex15) $\sqrt[3]{X^5}$

 $= \sqrt[3]{\chi^3 \cdot \chi^2}$

 $= \chi^{3} \chi^{2}$

Exponents that are multiples of 3 are perfect cubes.

1	121 144	
9	V 169	
16 25	196 225	
36	256	
49 64	289 324	
81	361	
100	400	
Perfect Cubes		
1 Q	216 242	
1 8 * 27	216 343 512	

Perfect Snuares

Simplify.

=

Exponents that are multiples of 2 are perfect squares.

ex16)
$$\sqrt{98r^{15}s^{21}t^{30}}$$

$$= \sqrt{49.2.14} \cdot (14.1.5)^{20} \cdot 5.1t^{30}$$

Perfect Squares		
1		121
4	Ł	144
9	O	169
16		196
25		225
36		256
49		289
64		324
81		361
100		400

Simplify.

=

Exponents that are multiples of 3 are perfect cubes.

$$e^{x17}$$
 $\sqrt[3]{16x^{10}y^{24}z^{29}}$

$$= \sqrt[3]{8 \cdot 2 \cdot \chi^{9} \cdot \chi \cdot \chi^{24}} \frac{27}{2 \cdot 2}$$

$$2x^{3}y^{8}z^{3}\sqrt{2xz^{2}}$$

