PRINCIPLES - LESSON 14C MULTIPLYING RADICALS

Simplify.

ex1) $5 \cdot \sqrt{3} = 5 \sqrt{3}$

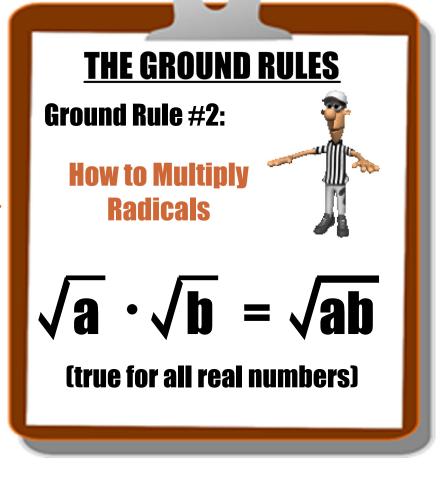
ex2) $5 \cdot \sqrt{4} = 5 \cdot 2$ ex3) $\sqrt{5} \cdot \sqrt{4} = \sqrt{5} \cdot 2$

THE GROUND RULES

Ground Rule #1:

"Inside with Inside -**Outside with Outside**"

When multiplying radicals, multiply numbers inside a radical only by other numbers inside a radical. Multiply numbers outside a radical only by other numbers outside a radical.


MULTIPLYING RADICALS

Simplify.

ex4) $\sqrt{8} \cdot \sqrt{2}$ THE EASY WAY = $\sqrt{8} \cdot 2 = \sqrt{6} = 4$

ex5) $\sqrt{8} \cdot \sqrt{2}$ The hard way

=24=2.2=4

Simplify.

ex6)
$$\sqrt{2n^5} \cdot \sqrt{6n}$$

$$= \sqrt{2n^5} \cdot 6n$$

$$=\sqrt{12n^6}$$

$$= \sqrt{4 \cdot 3 \cdot n^6}$$

ex7) $3\sqrt{5xy} \cdot 2\sqrt{4xy^4}$ = $3 \cdot 2 \cdot \sqrt{5xy} \cdot 4xy^4$ $= 6\sqrt{4\cdot5\cdot x^{2}\cdot y^{4}\cdot y}$ $= 12xy^{2}\sqrt{5y}$

Simplify.

 \leq

ex8)
$$5\sqrt[3]{9x^2} \cdot 2\sqrt[3]{-3x^5}$$

Now we need perfect cubes!

 $= 10^{3} - 27 \chi^{7}$

$$= 10 \sqrt[3]{-27 \cdot \chi^{6} \cdot \chi}$$

$$-30 \chi^2 \sqrt[3]{\chi}$$

Simplify. ex9) $\sqrt{3}(\sqrt{3}+5)$

= 19 + 513

Simplify. ex10) $(2\sqrt{5}+4)(4\sqrt{5}-7)$

 $= 8\sqrt{25} - 14\sqrt{5} + 16\sqrt{5} - 28$

 $= 40 + 2\sqrt{5} - 28$

= 12 + 25

MULTIPLYING RADICALS

Simplify.

$$= (-65w)(-65w)$$

 $= 36 \sqrt{w^{a}}$

ex11) $(-6\sqrt{W})^2$

$$foilex121 (1-6\sqrt{w})^{2}$$

= (1-65w)(1-65w)
= 1-65w - 65w + 365w^{2}
= 1-125w + 36w