

- of this policeman's time is spent patrolling.
 of his time is spent at the station.
- ex1) This week, he worked 40 hours. How much time did he spend patrolling?

How much time did he spend at the station?

$$\frac{1}{4}$$
 of 40 hours $\rightarrow \frac{1}{4}$. 40 = 10 hours

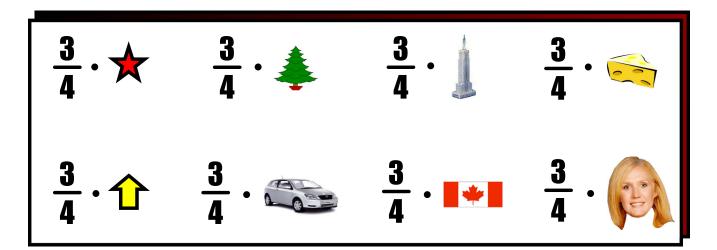
 $\frac{3}{4}$ of the policeman's time is spent patrolling. $\frac{1}{4}$ of his time is spent at the station.

ex2) Last week, he worked 60 hours. How much time did he spend patrolling?

How much time did he spend at the station?

$$\frac{1}{4}$$
 of 60 hours $\rightarrow \frac{1}{4} \cdot 60 = (15 \text{ hours})$

The hours worked per week may change, but the fraction of time spent patrolling the neighborhood is always 3/4 times the number of hours worked. Since the hours worked per week can vary, we can use a <u>variable</u> to represent that number.


VARIABLE: a symbol used to represent a number (usually a letter is used as the symbol)

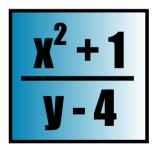
The time that the policeman spent patrolling can be expressed as:

WHY LETTERS FOR VARIABLES?

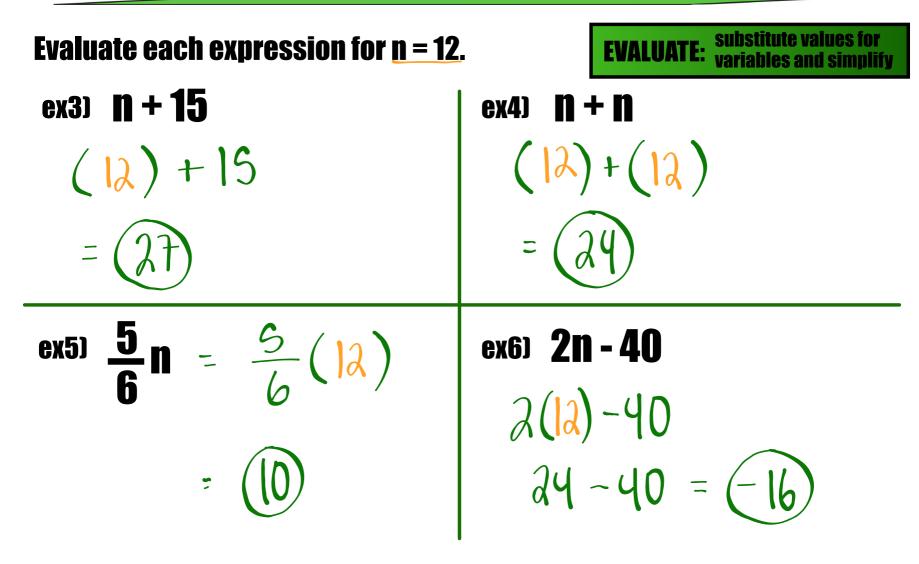
Instead of using h for hours in the algebraic expression $\frac{3}{4} \cdot h \dots$

Why use letters instead of these symbols for variables?

Letters are symbols that everyone knows and can draw.


ALGEBRAIC EXPRESSION: a number, a variable, or a combination of numbers, variables, and operators (+, - , x, ÷)

Some examples of algebraic expressions:



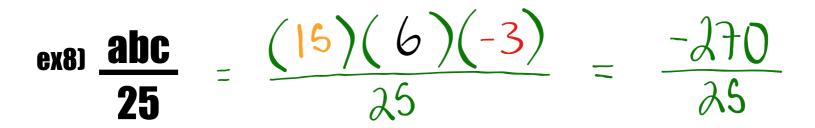
EVALUATING EXPRESSIONS

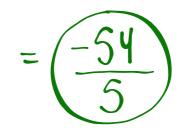
Ξ

Evaluate if a = 15, b = 6, c = -3.

<u>ab</u>

2c


ex7)


 $\frac{(15)(6)}{2(-3)}$

Variables side by side with no symbol between means <u>multiply</u>.

Evaluate if a = 15, b = 6, c = -3.

Evaluate if $\underline{b} = 6$, $\underline{c} = -3$.

$$ex9) \frac{2}{3} b - c = \frac{2}{3} (6) - (-3)$$

$$= 4 - (-3)$$

$$= 4 - (-3)$$

$$= 4 - (-3)$$

$$= 7$$