3.6 Practice with CalcChat® AND CalcView®

In Exercises 1−4, describe the slope of the line. Then find the slope. Example 1

In Exercises 5 and 6, find the slope of the line that passes through the given points.

5. (1, 4), (3, -6) **6.** (2, -2), (-7, -5)

In Exercises 7–10, the points represented by the table lie on a line. Find the slope of the line. *Example 2*

11. ANALYZING A GRAPH The graph shows the distance *y* (in miles) that a bus travels in *x* hours. Find and interpret the slope of the line.

12. ANALYZING A TABLE The table shows the amount *x* (in hours) of time you spend at a theme park and the admission fee *y* (in dollars) to the park. The points represented by the table lie on a line. Find and interpret the slope of the line.

Time (hours), <i>x</i>	Admission (dollars), <i>y</i>
6	54.99
7	54.99
8	54.99

In Exercises 13–20, find the slope and the *y*-intercept of the graph of the linear equation. \triangleright *Example 3*

13. $y = -3x + 2$	14. $y = 4x - 7$
15. $y = 6x$	16. $y = -1$
17. $-0.75x + y = 4$	18. $x + y = -6\frac{1}{2}$
19. $\frac{1}{6}x = \frac{1}{3} - y$	20. $0 = 4.5 - 2y + 4.8x$

ERROR ANALYSIS In Exercises 21 and 22, describe and correct the error in finding the slope and the *y*-intercept of the graph of the equation.

In Exercises 23-	30, graph the lin	ear equation. Identify
the <i>x</i> -intercept.	Example 4	

23.	y = -x + 7	24.	$y = \frac{1}{2}x + 3$
25.	y = 2x	26.	y = -x
27.	3x + y = -1	28.	x + 4y = 8
29.	$-y + \frac{3}{5}x = 0$	30.	2.5x - y - 7.5 = 0

In Exercises 31 and 32, graph the function with the given description. Identify the slope and the intercepts of the graph. Example 5

- **31.** A linear function f models a relationship in which the dependent variable decreases 4 units for every 2 units the independent variable increases, and f(0) = -2.
- **32.** A linear function *h* models a relationship in which the dependent variable increases 1 unit for every 5 units the independent variable decreases, and h(0) = 3.
- **33. MODELING REAL LIFE** A linear function *r* models the growth of your right index fingernail. The length of the fingernail increases 0.7 millimeter every week. Graph *r* when r(0) = 12. Identify the slope and interpret the *y*-intercept of the graph.
- **34. MODELING REAL LIFE** A linear function *m* models the amount of milk sold by a farm per month. The amount decreases 500 gallons for every \$1 increase in price. Graph *m* when m(0) = 3000. Identify the slope and interpret the intercepts of the graph.

ERROR ANALYSIS In Exercises 35 and 36, describe and correct the error in graphing the function.

- **37.** MODELING REAL LIFE The function $d(t) = \frac{1}{2}t + 6$ represents the depth (in inches) of snow on the ground during a 9-hour snowfall, where *t* is the time (in hours) after the snowfall begins. \triangleright *Example 6*
 - **a.** Graph the function and find its domain and range.
 - **b.** Interpret the terms and coefficient in the equation.

- **a.** Graph the function and find its domain and range.
- **b.** Interpret the terms and coefficient in the equation, and the *x*-intercept of the graph.
- **39.** COMPARING METHODS Describe two ways to graph the equation 4x 6y = 18. Which method do you prefer? Explain.
- **40. COMPARING FUNCTIONS** A linear function models the cost of renting a truck from Moving Company A. The table shows the cost *y* (in dollars) when you drive the truck *x* miles. The function c(x) = 0.5x + 70 represents the cost (in dollars) of renting a truck from

Moving Company B, where *x* is the number of miles you drive the truck. Graph each function. Which company charges a greater initial fee? Which company

Miles, <i>x</i>	Cost (dollars), <i>y</i>
0	40
50	80
100	120

- charges more per mile?
- **41.** COLLEGE PREP Which of the following linear functions has a slope of $-\frac{2}{3}$ and a *y*-intercept of 2? Select all that apply.

(C) f(x) decreases by 3 units for every 2 units x increases, and f(0) = 2.

- **42.** WRITING Describe the end behavior of the function y = mx + b when (a) m > 0 and (b) m < 0.
- **43. CONNECTING CONCEPTS** The graph shows the relationship between the width *y* (in inches) and the length *x* (in inches) of a rectangle. The perimeter of a second rectangle is 10 inches less than the perimeter of the first rectangle.

- **a.** Graph the relationship between the width and length of the second rectangle.
- **b.** How does your graph in part (a) compare to the graph shown?
- **44. CONNECTING CONCEPTS** The graph shows the relationship between the base length *x* (in meters) and the lengths *y* (in meters) of the two equal sides of an isosceles triangle. The perimeter of a second isosceles triangle is 8 meters more than the perimeter of the first triangle.

- **a.** Graph the relationship between the base length and the side lengths of the second triangle.
- **b.** How does your graph in part (a) compare to the graph shown?
- **45. CONNECTING CONCEPTS** Graph the equations in the same coordinate plane. What is the area of the enclosed figure?

$$3y = -9$$

$$2y - 14 = 4x$$

$$-4x + 5 - y = 0$$

$$y - 1 = 0$$

46. MAKING AN ARGUMENT Your friend says that you can write the equation of any line in slope-intercept form. Is your friend correct? Explain your reasoning.

- **47. ANALYZING EQUATIONS** Which equations could be represented by each graph? (The graphs are not drawn to scale.)
 - $y = -3x + 8 y = -x \frac{4}{3}$ y = -7x y = 2x - 4 $y = \frac{7}{4}x - \frac{1}{4} y = \frac{1}{3}x + 5$ y = -4x - 9 y = 6

48. HOW DO YOU SEE IT?

You commute to school by walking and by riding a bus. The graph represents your commute.

- a. Describe your commute in words.
- **b.** Calculate and interpret the slopes of the different parts of the graph.

MP PROBLEM SOLVING In Exercises 49 and 50, find the value of *k* so that the graph of the equation has the given slope or *y*-intercept.

49.
$$16kx - 4y = 20; m = \frac{1}{2}$$

50. $\frac{2}{3}x + 2y - \frac{5}{3}k = 0; b = -10$