p. 191, #1-16 all, #25, #26

An equation is y = 2x + 9.

$$y = mx + b$$
$$y = 0x + 5$$
$$y = 5$$

An equation is y = 5.

$$3. y = mx + b$$
$$y = -3x + 0$$

y = -3x

An equation is y = -3x.

4.
$$y = mx + b$$

 $y = -7.5x + 1.5$

An equation is y = -7.5x + 1.5.

5.
$$y = mx + b$$

$$y = \frac{2}{3}x + (-8)$$

$$y = \frac{2}{3}x - 8$$

An equation is $y = \frac{2}{3}x - 8$.

6.
$$y = mx + b$$

$$y = -\frac{3}{4}x - \frac{1}{4}$$

An equation is $y = -\frac{3}{4}x - \frac{1}{4}$.

7. Let
$$(x_1, y_1) = (0, 2)$$
 and $(x_2, y_2) = (3, 3)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 2}{3 - 0} = \frac{1}{3}$$

Because the line crosses the y-axis at (0, 2), the y-intercept is 2.

So, the equation is $y = \frac{1}{3}x + 2$.

8. Let
$$(x_1, y_1) = (0, 3)$$
 and $(x_2, y_2) = (4, 2)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 3}{4 - 0} = \frac{-1}{4} = -\frac{1}{4}$$

Because the line crosses the y-axis at (0, 3), the y-intercept is 3.

So, the equation is $y = -\frac{1}{4}x + 3$.

9. Let $(x_1, y_1) = (-3, 4)$ and $(x_2, y_2) = (0, 0)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{0 - (-3)} = \frac{0 - 4}{0 + 3} = \frac{-4}{3} = -\frac{4}{3}$$

Because the line crosses the y-axis at (0, 0), the y-intercept is 0.

So, the equation is $y = -\frac{4}{3}x + 0$, or $y = -\frac{4}{3}x$.

10. Let $(x_1, y_1) = (0, -2)$ and $(x_2, y_2) = (2, 2)$.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - (-2)}{2 - 0} = \frac{2 + 2}{2 - 0} = \frac{4}{2} = 2$$

Because the line crosses the y-axis at (0, -2), the y-intercept is -2.

So, the equation is y = 2x - 2.

11.
$$m = \frac{10-1}{0-3} = \frac{9}{-3} = -3$$

Because the line crosses the y-axis at (0, 10), the y-intercept is 10.

So, the equation is y = -3x + 10.

12.
$$m = \frac{-5 - 7}{0 - 2} = \frac{-12}{-2} = 6$$

Because the line crosses the y-axis at (0, -5), the y-intercept is -5.

So, the equation is y = 6x - 5.

13.
$$m = \frac{-4 - (-4)}{0 - 2} = \frac{-4 + 4}{0 - 2}, = \frac{0}{-2} = 0$$

Because the line crosses the y-axis at (0, -4), the y-intercept is -4.

So, the equation is y = 0x + (-4), or y = -4.

14.
$$m = \frac{-24 - 0}{0 - (-6)} = \frac{-24 - 0}{0 + 6} = \frac{-24}{6} = -4$$

Because the line crosses the y-axis at (0, -24), the y-intercept is -24.

So, the equation is y = -4x - 24.

15.
$$m = \frac{1 - 5.2}{-1.5 - 0} = \frac{-4.2}{-1.5} = 2.8$$

Because the line crosses the y-axis at (0, 5.2), the y-intercept is 5.2.

So, the equation is y = 2.8x + 5.2.

16.
$$m = \frac{\frac{7}{3} - \frac{1}{3}}{-5 - 0} = \frac{2}{-5} = -\frac{2}{5}$$

Because the line crosses the y-axis at $\left(0, \frac{1}{3}\right)$, the y-intercept is $\frac{1}{3}$.

So, the equation is $y = -\frac{2}{5}x + \frac{1}{3}$.

25. The slope and *y*-intercept were substituted incorrectly. The slope is 2. So,
$$m = 2$$
. The *y*-intercept is 7. So, $b = 7$. $y = mx + b$

26. The coordinates of the points were substituted incorrectly

$$y = mx + t$$
$$y = 2x + 7$$

An equation is y = 2x + 7.

when calculating the slope. Let $(x_1, y_1) = (0, 4)$ and $(x_2, y_2) = (5, 1)$.

Let
$$(x_1, y_1) = (0, 4)$$
 and $(x_2, y_2) = (5, 1)$.
Slope $= \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 4}{5 - 0} = \frac{-3}{5} = -\frac{3}{5}$

 $x_2 - x_1$ 5 - 0 5 5 Because the line crosses the y-axis at (0, 4), the y-intercept is

4, which was correct.

$$y = mx + b$$

$$y = -\frac{3}{5}x + 4$$

An equation is $y = -\frac{3}{5}x + 4$.